DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

		BA	SIC E	LECT	RICA	L & E	LECT	RONI	CS EN	GINE	ERIN	IG		
					(Com	nmon f	or all	brancł	nes)					
Cours	Course Outcomes: At the end of this course students will demonstrate the ability to													
CO1	Remember the fundamental laws, operating principles of motors, generators, MC and MI													
	instruments.													
CO2	2 Understand the problem solving concepts associated to AC and DC circuits, construction and													
	operation of AC and DC machines, measuring instruments; different power generation													
	mechanisms, Electricity billing concept and important safety measures related to electrical													
	operations.													
CO3	Apply mathematical tools and fundamental concepts to derive various equations related to													
	machi	nes, c	ircuits	and 1	measuri	ng ins	strumer	nts; ele	ectricity	/ bill	calcu	lations	and	layout
	repres	entation	n of elee	ctrical p	ower s	ystems.								
					(CO-PO) Map	ping						
Cos						PC)s						PS	Os
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3										2	3
CO2	3	3	3										2	3
CO3	3	3	3	2									3	3
					1 - Lov	w, 2 - I	Mediu	m, 3 -]	High					

	F	CLEC	FRIC	AL &	ELE	CTRO	DNIC	S ENG	GINE	ERIN	G WO	RKSH	OP	
					(Co	ommo	n for	all br	anche	es)				
Cours	e Outc	omes:	At the	end of	f this c	ourse	studen	ts will	demor	nstrate t	he abili	ty to		
CO1 Understand the Electrical circuit design concept; measurement of resistance, power, power factor; concept of wiring and operation of Electrical Machines and Transformer.														
CO2 Apply the theoretical concepts and operating principles to derive mathematical models for circuits, Electrical machines and measuring instruments; calculations for the measurement of resistance, power and power factor.														
CO3	O3 Apply the theoretical concepts to obtain calculations for the measurement of resistance, power and power factor.													
						CO	-PO N	/Iappi	ng					
Cos]	POs						PS	Os
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										2	3
CO2	2	2	2										2	3
CO3	3	2	2										2	3
					1 - L	ow, 2	- Me	dium,	3 - H	igh				

ELECTRICAL CIRCUIT ANALYSIS - I														
Course	e Objec	ctives:	:											
To dev	elop a	n und	erstan	ding	of the	fund	ament	tal lav	vs, ele	ements	of ele	ectrical	circuits	and to
apply c	ircuit a	nalysi	s to D	C and	I AC d	circuit	s.							
Course	e Outco	omes:	At the	end of	f this c	ourse	studen	ts will	demor	nstrate t	he abili	ty to		
CO1	CO1 Remembering the basic electrical elements and different fundamental laws.													
CO2	Unders	stand t	he net	work	reduct	ion tec	chniqu	es, tra	nsforn	nations,	concep	ot of se	lf-inducta	ince and
	mutual inductance, phasor diagrams, resonance and network theorems.													
CO3	Apply the concepts to obtain various mathematical and graphical representations.													
CO4	Analyse nodal and mesh networks, series and parallel circuits, steady state response, different													
	circuit topologies (with R, L and C components).													
CO5	Evalua	tion of	f Netw	ork the	eorems	, elect	rical, n	nagnet	ic and	single-	phase ci	rcuits.		
						CO	-PO N	/Iappi	ng					
Cos				-	-]	POs		-	-		-	PS	Os
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1										3	1
CO2	3	3	3										2	1
CO3	3	3	3										3	3
CO4	3	3	3										2	3
CO5	CO5 3 3 2 2 3													
	·	•		•	1 - L	.ow, 2	- Me	dium,	3 - H	igh		•		

ELECTRICAL CIRCUIT AANALYSIS – I LABORATORY

Course Objectives:

To impart hands on experience in verification of circuit laws and theorems, measurement of circuit parameters, study of circuit characteristics. It also gives practical exposure to the usage of different circuits with different conditions.

Course	e Outco	mes:	At the	end of	this co	ourse s	tudent	s will	demon	strate th	ne abilit	ty to		
CO1	Under	stand t	he cor	ncepts	of net	work	theore	ems, n	ode ar	nd mes	h netwo	orks, se	eries and	parallel
	resona	nce and	l Locu	s diagi	ams.									
CO2	Apply	variou	s theo	rems t	o com	pare p	oractic	al resu	ılts ob	tained v	with th	eoretica	lcalculati	ions.
CO3	Deterr coil.	nine se	lf, mı	itual i	nducta	nces a	and co	efficie	ent of	couplir	ng valu	es, par	ameters	ofchoke
CO4	O4 Analyze different circuit characteristics with the help of fundamental laws and various configurations.													
CO5	Create locus diagrams of RL, RC series circuits and examine series and parallelresonance.													
CO-PO Mapping														
Cos	B POs PSOs													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	1		1	2		1		2	2	2
CO2	2	2	2	1	1		1	2		1		2	2	2
CO3	2	2	2	1	1		1	2		1		2	2	2
CO4	2	2	2	1	1		1	2		1		2	2	2
CO5	2	2	1				1						2	3
	1 - Low, 2 - Medium, 3 - High													

					N	ETW	ORK	ANA	LYSI	5				
Course	e Outco	omes:	At the	end of	f this c	ourse	studen	ts will	demor	nstrate t	he abili	ty to		
CO1	Unders	stand b	asic el	ectrica	al circu	its wit	h noda	al and a	mesh a	nalysis				
CO2	Analys	se the c	circuit	using	netwoi	k sim	olificat	ion the	eorems	5.				
CO3	Find T	ransie	nt resp	onse a	nd Ste	ady sta	ite resp	onse o	of a net	work.				
CO4	O4 Analyse electrical networks in the Laplace domain.													
CO5 Compute the parameters of a two-port network.														
CO-PO Mapping														
Cos]	POs						PS	Os
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1										3	1
CO2	3	3	3										2	1
CO3	3	3	3										3	3
CO4 3 3 3 2 3														
CO5	CO5 3 3 2 2 3													
	1 - Low, 2 - Medium, 3 - High													

	NETWORK ANALYSIS LABORATORY													
Course	Course Outcomes:													
CO1	Verify	Kircho	off's la	ws and	l netwo	ork the	orems							
CO2	Measu	re time	consta	ants of	RL &	RC ci	rcuits.							
CO3	Analyz	e beha	vior of	f RLC	circuit	for di	fferent	cases.						
CO4 Design resonant circuit for given specifications.														
CO5 Characterize and model the network in terms of all network parameters.														
CO-PO Mapping														
Cos	POs PSOs													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	1		1	2		1		2	2	2
CO2	2	2	2	1	1		1	2		1		2	2	2
CO3	2	2	2	1	1		1	2		1		2	2	2
CO4	2	2	2	1	1		1	2		1		2	2	2
CO5	2	2	1		1		1						2	3
CO5 2 2 1 1 1 2 3 1 - Low, 2 - Medium, 3 - High 2 3 <t< th=""><th></th><th></th></t<>														

ELECTROMAGNETIC FIELD THEORY										
Course Ob	jectives:									
1. To review	v the fundamentals of the different coordinate systems, vector algebra and calculus									
2. To teach the basic laws of electromagnetism										
3. To learn	to compute and visualize the electrostatic and magnetostatic fields for simple									
configuratio	ons									
4. To analy	yse the time varying electric and magnetic fields and to understand Maxwell's									
equations										
5. To under	stand the propagation of electromagnetic waves through different media									
Course Ou	tcomes: After successful completion of the course, the student will be able to:									
CO 1	Remember the concepts of vector algebra, vector calculus, various fundamental									
	laws, self and mutual inductance. (BL1)									
CO 2	Understand the concepts of electrostatics, conductors, dielectrics, capacitance,									
	magneto statics, magnetic fields, time varying fields, self and mutual inductances.									
	(BL2)									
CO 3	Apply vector calculus, Coulomb's law, Gauss's law, Ohm's law in point form,									
	Biot- Savart's law, Ampere's circuital law, Maxwell's third equation, self and									
	mutual inductances, Faraday's laws, Maxwell's fourth equation, Poynting theorem									
	to solve various numerical problems. (BL3)									
CO 4	Analyze vector calculus, electrostatic fields, behavior of conductor in electric filed,									
	Biot-Savart's law and its applications. (BL4)									
CO 5	Analyze magnetic force, moving charges in a magnetic field, self-inductance of									
	different cables, mutual inductance between different wires and time varying fields.									
	(BL4)									

	CO-PO Mapping													
CO							PO						PS	50
	PO1	PO12	PSO1	PSO2										
CO1	3	3	2	2									2	1
CO2	3	3	2	2									2	1
CO3	3	3	1	1									2	1
CO4	3	3	2	2									2	1
CO5	CO5 3 3 2 2 2 2 2 1													
	1: Low, 2-Medium, 3- High													

	Electrical Circuit Analysis – II
Course Ob	jectives:
1. To know	the analysis of three phase balanced and unbalanced circuits and to measure
active and re	eactive powers in three phase circuits.
2. Knowing	how to determine the transient response of R-L, R-C, R-L-C series circuits for
D.C and A.C	C excitations.
3. To introdu	uce the various two-port networks parameters for a given circuit.
4. To evalua	tion of poles and zeros of a given transfer function.
5. To study	the different types of filters
Course Ou	tcomes: After successful completion of the course, the student will be able to:
CO 1	Remember the concepts of Laplace transforms, formulation of various circuit
1	topologies (R, L and C components) and basic filters. (BL1)
CO 2	Understand three phase balanced and unbalanced circuits, different circuit
	configurations and it's mathematical modeling, network parameters and various
:	filters. (BL2)
CO 3	Apply Laplace transforms to solve various electrical network topologies and filter
	design concepts. (BL3)
CO 4	Analyze three phase circuits, transient response of various network topologies,
	electric circuits with periodic excitations and filter characteristics. (BL4)
CO 5	Design suitable electrical circuits and various filters for different applications.
	(BL5)

	CO-PO Mapping														
CO						Р	0						PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>11</u> <u>12</u> <u>1</u> <u>2</u>													
CO1	3	3	3	2									3	3	
CO2	3	3	3	2									3	3	
CO3	3	3	3	2									3	2	
CO4	3	3	3	2									1	2	
CO5	CO5 2 2 3 2 1														
1: Low, 2-Medium, 3- High															

	DC MACHINES AND TRANSFORMERS
Course (Objectives:
1. Te	o understand the constructional features of DC machines.
2. Te	o understand the phenomena of armature reaction and commutation.
3. To	o understand the characteristics and parallel operation of dc machines.
4. Te	o understand the methods for speed control of DC motors and applications of DC
m	otors.
5. To	o understand the various types of losses that occurs in DC machines and how to
ca	lculate efficiency.
6. To	o understand the constructional features of a single phase transformer.
7. To	o understand the efficiency and voltage regulation of a transformer.
8. To	o understand the Autotransformers Construction & Comparison with two winding
tra	ansformer.
9. To	o suggest a suitable three phase transformer connection for a particular operation.
10. To	o understand the tap changing of transformers.
Course (Dutcomes : After successful completion of the course, the student will be able to:
CO 1	Understand the process of voltage build-up in DC generators and characteristics.
	(BL2)
CO 2	Understand the process of torque production, starting and speed control of DC motors
	and illustrate their characteristics. (BL2)
CO 3	Obtain the equivalent circuit of single-phase transformer, auto transformer and
	determine its efficiency & regulation. (BL3)
CO 4	Apply various testing methods for transformers and speed control of DC motors.
	(BL3)
~~ -	

CO 5 Analyze various configurations of three-phase transformers. (BL4)

	CO-PO Mapping															
CO						PO)						PS	0		
	PO1	PO2	PO	PSO1	PSO											
	3 4 5 6 7 8 9 10 11 12 2 2 2 2 2 2 2 1 1 1 2 2 1															
CO1	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
CO2	2	2	2	2		2				1	1	2	1	2		
CO3	2	2	2	2		2				1	1	2	2	1		
CO4	2	3	3	2		2				1	1	2	2	1		
	3	3	3	3		2				1	1	2	1	2		
CO5	CO5															
	1: Low, 2-Medium, 3- High															

ELECTRICAL CIRCUIT ANALYSIS - II AND SIMULATION LAB

Course Objectives:

The objectives are to study:

1. To design electrical systems.

2. To analyze a given network by applying various Network Theorems.

3. To measure three phase Active and Reactive power.

4. To understand the locus diagrams

Course O	Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1	Understand the power calculations in three phase circuits. (BL2)							
CO 2	Analyze the time response of given network. (BL4)							
CO 3	Determination of two port network parameters. (BL4)							
CO 4	Simulate and analyze electrical circuits using software tools. (BL4)							
CO 5	Apply various theorems to solve different electrical networks using simulation							
	tools. (BL3)							

CO-PO & PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3				2		1	2	2	2	2	2	2
CO2	3	3			2	2			2	2	2		2	2
CO3	3	3				2			2	2	2	2	2	2
CO4	3	3	3		2	2		1	2	2			2	2
CO5	3	3	3		2	2		1	2	2			2	2

1 – Low Level; 2 – Moderate Level; 3 – High Level

DC MACHINES AND TRANSFORMERS LAB

Course Objectives:

1. To familiarize students about OCC and internal, external characteristics of dc shunt generator.

2. To know the performance characteristics and speed control method of dc shunt motor

3. To know how to predetermine the efficiency of dc shunt motor.

4. To find efficiency, losses and regulation of single phase transformer.

5. To know how to find motor and generator efficiency by connecting to dc shunt machines back to back

6. To familiarize students about characteristics of dc series motor

Course Outcomes: After successful completion of the course, the student will be able to:								
CO 1	Demonstrate starting and speed control methods of DC Machines. L2							
CO 2	Apply theoretical concepts to determine the performance characteristics of DC							

	Machines. L3
CO 3	Analyze the parallel operation of single phase transformers. L4
CO 4	Determine the performance parameters of single-phase transformer. L3
a a	

CO 5 Analyze the performance analysis of transformers using various tests. L4

	CO-PO Mapping													
CO	РО												PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1	3	3	3	2	2				3	2		3	3	3
CO2	2	3	3	1	2				2	2		3	3	3
CO3	3	3	3	1	2				2	2		3	3	3
CO4	3	3	3	1	2				2	2		3	3	3
CO5	3	3	3	1	2				2	2		3	3	3
					1: Lo	w, 2-N	Mediu	m, 3-	High					

POWER SYSTEM – I

Course Objectives:

- 1. To understand the structure, essential components and their layout in non renewable generating stations.
- 2. To understand the electrical power generation from renewable energy sources as Nuclear Energy
- 3. To understand the different types of substations and their working./operation.
- 4. To understand the various types of distribution system.
- 5. To understand the calculation of economic aspects and different types of tariff.

Course	Course Outcomes: On successful completion of the course, student will be able to:								
CO 1	Understand the different types of power plants, operation of power plants. (BL2)								
CO 2	Understand the concepts of distribution systems, underground cables, economic aspects and tariff (BL2)								
CO 3	Understand various substations that are located in distribution systems (BL2)								
CO 4	Apply the above concepts to illustrate different power generation layouts (BL3)								
CO 5	Analyze various economic aspects related to power generation and distribution (BL4)								

	CO-PO Mapping													
~~~	PO										PSO			
CO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2										2	2
CO2	2	3											3	2
CO3	3	2											3	2
<b>CO4</b>	2	3	1										1	3
<b>CO5</b>	3	3											1	1
	1: Low, 2-Medium, 3- High													

#### INDUCTION AND SYNCHRONOUS MACHINES

#### **Course Objectives:**

1. To understand the Constructional details, principle of operation and the importance of slip in Induction motor operation

2. To understand the slip-torque characteristics and torque calculations of Induction motor

3. To understand the methods of starting and speed control of Induction motor

4. To understand the construction and principle of working of synchronous machines

5. To understand the different methods of predetermining the regulation of alternators

6. To understand the concepts and computation of load sharing among alternators in parallel.

7. To understand the performance characteristics of synchronous motors and their use as synchronous condensers for power factor improvement.

8. To understand the different types of single phase motors and special motors used in house hold appliances and control systems.

<b>Course O</b>	utcomes: After successful completion of the course, the student will be able to:
CO 1	Understand the construction, principle and operation of single phase and three
	phase induction motors (BL-2)
CO 2	Understand the construction, principle and operation of synchronous generator and
	Synchronous motor (BL-2)
CO 3	Understand various applications of various alternating machines (BL-2)
CO 4	Apply the above concepts to solve various mathematical and complex problems
	(BL-3)
CO 5	Analyze the characteristics of induction motor, synchronous motor and
	synchronous generators (BL-4)

	CO-PO Mapping													
CO		PO											PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1	3	2	1										2	2
CO2	3	2	2										2	2
CO3	3	2	2										2	2
<b>CO4</b>	3	2	1										2	2
<b>CO5</b>	3	2	1										2	2
	1: Low, 2-Medium, 3- High													

	CONTROL SYSTEMS							
Course (	Objectives:							
1. To und	1. To understand the merits and demerits of open and closed loop control systems							
2. To und	2. To understand the mathematical modeling of Electrical and mechanical control							
systems								
3. To und	lerstand the step response of second order control systems							
4. To plo	t Root locus for the given system transfer function							
5. To und	lerstand the stability analysis from Bode plot, polar plots							
6. To und	lerstand the state space analysis							
<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:								
CO 1	Understand the concepts of various mathematical representations of control							
	systems, Time response of first order and second order systems, stability,							
	frequency response and fundamentals of modern control systems (BL-2)							
CO 2	Apply Block diagram reduction, Signal flow graph, Routh criterion, Root locus,							
	Bode, Polar, Nyquist concepts for solving various numerical problems (BL-3)							
CO 3	Analyze time response characteristics, frequency response characteristics, stability							
	analysis of various control systems (BL-4)							
<b>CO 4</b>	Design various compensators and controllers for different control systems by using							
	design procedures (BL-5)							
CO 5	Create suitable control systems for various real time applications (BL-5)							

	CO-PO Mapping													
CO	РО												PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1	3	2												1
CO2	2	1												1
CO3	2	1												1
<b>CO4</b>	2	1	1											1
CO5	2	1	1											1
	1: Low, 2-Medium, 3- High													

#### INDUCTION AND SYNCHRONOUS MACHINES LAB

### **Course Objectives:**

1. To find the performance of induction motor by calculating the efficiency.

2. To find direct and quadrature axis reactances of synchronous motor.

3.To find voltage regulation by using various methods on synchronous

machine4.To determine 'v' and 'inverted v' curves of synchronous motor.

5. To find the efficiency and power factor from circle diagram byconducting no load andblocked rotor test on 3-phase induction motor.

Course O	utcomes: After successful completion of the course, the student will be able to:
CO 1	Analyze various performance characteristics of 3-phase and 1-phase induction
	Motors (BL-4)
CO 2	Evaluate the performance of 3-phase Induction Motor by obtaining the circle
	diagram and equivalent circuit of 3-phase Induction Motor and single phase
	induction motor (BL-4)
<b>CO 3</b>	Adapt the power factor improvement methods for single phase Induction Motor
	(BL-3)
<b>CO 4</b>	Pre-determine the regulation of 3-phase alternator (BL-3)
CO 5	Determine the synchronous machine reactance of 3-phase alternator (BL-3)

CONTROL SYSTEMS LAB							
Course Objectives:							
The objectives are to study:							
1. To provide practical knowledge for Time response of second order system							
2. Determine of transfer functions of various systems and control of it by different							
Methodologies							
3. The characteristics of Magnetic Amplifier, servo mechanisms which are helpful in							
automatic control systems							
4. Determine the stability analysis of different system by using PSPICE and MATLAB							
5. To study the closed loop performance for the given plant using P, PD, PI, PID Controllers.							
6. The design of controllers/compensators to achieve desired specifications.							
Course Outcomes: After successful completion of the course, the student will be able to:							
<b>CO 1</b> U	Inderstand how to use feedback control system to determine transfer function of						
D	DC servo motor and any other given circuit with R, L and C components (BL-2)						
CO 2 N	Addel the systems and able to design the controllers and compensators. (BL-3)						
<b>CO 3</b> G	Set the knowledge about the effect of poles and zeros location on transient and						
st	teady state behavior of second order systems and implement through software						
to	pols (BL-4)						
CO4 D	Determine the performance and time domain specifications of first and second						
01	rder systems. (BL-4)						
<b>CO 5</b> U	Inderstand the stability analysis (BL-2)						

CO-PO Mapping														
CO	PO												PSO	
	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO 2
<b>CO1</b>	3	2			3				2	2		3	3	3
CO2	2	3	3	3	3				3	2		3	3	3
CO3	2	2	3	2	3				2	2		3	3	2
<b>CO4</b>	2	2	3	2	3				2	2		3	3	2
CO5	2	2	3	2	3				2	2		3	3	2
	1: Low, 2-Medium, 3- High													